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Abstract

Hydrodynamic interactions between two identical solid spheres are investigated numerically using a
®nite element method. The spheres are held ®xed relative to each other with the line connecting their
centres normal to the ¯ow direction. The method is applied in three-dimensional, at Reynolds numbers
10, 50 and 5 � 10ÿ7. The drag and interaction coe�cients of the spheres are calculated as functions of
the distance between the two spheres. The results of the calculations show that, for Reynolds number of
50, the two spheres are repelled when the spacing is of the order of the diameter but are weakly
attracted at intermediate separation distances. The results agree with experimental and theoretical data
reported for di�erent Reynolds numbers. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper originated from experimental work we performed on aggregation experiments on
dispersions consisting of polystyrene spheres and water (Folkersma et al., 1998; Folkersma and
Stein, 1998). We studied the in¯uence of gravity on Brownian coagulation and found an
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increase in coagulation rate at micro-g conditions compared to 1g conditions. One explanation
for this behaviour could be an in¯uence of hydrodynamics: at 1g conditions the polystyrene
spheres sediment and hydrodynamic interactions between two spheres approaching each other,
might retard coagulation. At micro-g conditions these hydrodynamic interactions are absent,
because at micro-g the particles do not settle.
The intention of this investigation is to study the in¯uence of the non-linear terms of the

Navier±Stokes equation on the hydrodynamic interaction forces between two settling spheres
at 1g conditions. Among the possible types of hydrodynamic interaction, especially of interest
in the present study is the hydrodynamic interaction of two particles sedimenting side by side.
For incompressible ¯uids with constant viscosity neglecting inertial e�ects, the transport
equation is the Stokes equation; its solution can be found in an analytical form if the geometry
of the considered particles is such that coordinate surfaces ®t the physical boundaries of the
problem. Examples of this approach include the classical problem of a single spherical particle
in a uniform ¯ow, solved by Stokes (1851), and ellipsoidal or two spherical particles which are
close together in a linear ¯ow, discussed by Stimson and Je�erey (1926). These analytical
solutions, however, are restricted to Reynolds numbers Re < 3 (particle diameter as the
characteristic length and the ¯ow velocity at a large distance as the characteristic velocity). So
for ¯ows at low Reynolds numbers (10ÿ7±10ÿ5), which are common in stagnant colloid
dispersions, normally Stokes law applies; however, for ¯ows at intermediate Reynolds
numbers, which are common in the processing of colloids (transportation, dispersing of
particles in colloid or pearl mills, stirred vessels etc.) it is necessary to solve the Navier±Stokes
equations numerically. Many investigators have considered the interactions between particles
and the surrounding ¯uid by analytical and numerical methods. Among them are Eveson et al.
(1959), Hocking (1964), Jayaweera et al. (1964), Goldman et al. (1996), Wakiya (1967), O'Neill
(1969), O'Neill and Majumdar (1970), Batchelor (1972), Batchelor and Green (1976), Davis et
al. (1976), Je�rey (1982), Dabros (1985), Kim and Mi�in (1985), Yoon and Kim (1987),
Cichocki et al. (1988, 1994) and Kim et al. (1993).
Kim et al. (1993) studied the three-dimensional (3D) ¯ow over two identical spheres which

are held ®xed relative to each other with the line connecting their centres normal to uniform
stream, for Re � 50, 100 and 150. The two spheres repel each other when they are close, and
the repulsion is stronger the closer they are. On the other hand, the two spheres weakly attract
each other at intermediate separation distances.
Although, recently, some numerical studies have been performed for 3D ¯ows over a single

sphere by Dandy and Dwyer (1990) and Tomboulides et al. (1991), 3D ¯ow interactions
between particles have not been studied extensively, to the knowledge of the author, with the
exception of Kim et al. (1993), Cichocki et al. (1994), Joseph and Liu (1993) and Joseph et al.
(1994).
In the present paper, ¯ow interactions were calculated between two identical spheres which

are held ®xed side by side against a uniform stream directed perpendicular to the line
connecting the spheres' centres, at di�erent Reynolds numbers. The e�ects of 3D interactions
on the drag and interaction coe�cients were calculated as a function of the dimensionless
distance between the two spheres and Reynolds number by a ®nite element method (FEM)
(Cuvelier et al., 1986), using Cartesian coordinates. The drag coe�cients were also calculated
for veri®cation of our program and comparison with results of other investigators. However,
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these calculations will not be treated in the present paper. The interaction coe�cients
calculated in this paper indicate whether the particles repel or attract each other.
The novelties of this paper are: (i) the use of 3D Cartesian coordinates for sphere

calculations; (ii) investigation whether spheres repel or attract each other at low Reynolds
numbers, without ignoring the non-linear terms in the Navier±Stokes equations; (iii) our
computational domain can be easily extended to multiple-particle interactions, which are very
important in colloids. Because of the simple cube geometry of the computational domain for
one sphere used in this paper, we can create a 3D computational domain with as many spheres
as one would like to have.

2. Governing equations and computational method

2.1. Governing equations

To calculate the velocity pro®le of the continuous phase, Cartesian coordinates are used. The
equations governing the ¯ow are:

(a) the continuity equation, i.e., mass balance for a small volume element of ¯uid, at
constant density r,

r � u � 0 �1�
and
(b) the momentum equation for steady Newtonian ¯ows:

r�u � r� ÿ r � s � rf �2�
with

s � ÿpI� t �3�
with

t � Z
ÿru� �ru�c� �4�

Here I is the unit tensor, s is the Cauchy stress tensor, t is the viscous stress tensor, Z is the
viscosity, u is the velocity of the ¯uid phase, p is the pressure and f is an external volume
force per unit of mass.

These equations can be written in a dimensionless form by introducing a characteristic length
L and a characteristic scalar velocity U0, and using the following de®nitions:

x 0 � x

L
, u 0 � u

U0
, p 0 � p

rU 2
0

, f 0 � f

U 2
0=L

�5�

Omitting the primes, we obtain:

r � u � 0 �6�
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and

ÿ 1

Re
Du� �u � r�u� rp � f �7�

where Re is the Reynolds number de®ned by Re � rU0L=Z:
f is set equal to zero in our calculations, because gravity is introduced as the settling rate of

the particles which is expressed in the Reynolds number.

2.2. Problem statement and numerical solution method

The calculations described in this paper are based on the following experimental system
(Folkersma et al., 1998):

. Polystyrene spheres with a radius of 1 mm and a density of 1.050 kg/m3; the velocity of the
particles during settling at terrestrial conditions varied from 10ÿ7 to 10ÿ6 m/s; no settling at
micro-g conditions.

. The ¯uid used was water, with a density of 999.698 kg/m3 and a viscosity of 10ÿ3 Pa s
(during the experiments the density of the continuous phase was adapted by adding
deuterium oxide (D2O)).

The characteristic length in the calculations is chosen to be equal to the particle diameter. At
the inlet of the calculation domain a constant velocity (independent of distance measured from
the side faces of the computational domain) is assumed (see Fig. 1). The characteristic velocity
U0 is de®ned as the value of this constant velocity.
The 3D computational domain in our calculations contains one sphere. As a computational

domain a cube is taken and the sphere is placed at the centre of this cube.
For the calculation of the ¯ow around two spheres a symmetry condition is used at one side

of this cube. The sides of the numerical box are 24 times the diameter of a sphere. For the two
spheres problem, boundary S3 (shaded plane in Fig. 1) is shifted in the x-direction to obtain
the needed separation distance between the two spheres. The sides of the numerical box are 48
times as large as the smallest separation distance between the spheres. The numerical box

Fig. 1. Computational domain and boundary conditions for the calculation of the hydrodynamic force acting on
two spheres placed side by side.
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contains 6000 elements, corresponding with 58,000 nodes, with a higher density of nodes on
the sphere surface and in the proximity of the sphere, than at the boundaries of the numerical
box. The size and the spatial resolution of the numerical box were tested and with the
speci®cations given in this section no wall e�ect of the numerical box on the results of the
calculations was found.
Fig. 1 shows the computational domain together with the in¯ow conditions. In this domain

the following physical situation has been simulated.

2.2.1. One sphere in the domain and one other sphere in an adjacent domain
The tangential components, in normal direction, of the velocity with respect to one side face

are made equal to zero and on the other ®ve side faces the dimensionless velocity is equal to
U0 in the z-direction, hence for the calculation of two spheres, only one sphere domain needs
to be considered. Because of the symmetry the following boundary condition holds for the
calculations of two spheres (boundary S3):

ux � 0, dxy � dxz � 0: �8�

2.3. Calculation of the non-dimensional drag and interaction coe�cients

The non-dimensional drag and interaction coe�cients are evaluated from the drag and
interaction forces FD and FI:

FD �
�
S

ÿpn � ez dS�
�
S

n � t � ez dS, �9�

FI �
�
S

ÿpn � ex dS�
�
S

n � t � ex dS, �10�

where ex and ez denote the unit vectors in x- and z-direction, S denotes the surface of the
sphere, n is the outward unit normal vector at the surface and t is the viscous stress tensor.
So to calculate the drag force, FD the z-components of the normal and tangential stress, at

the particle surface need to be integrated over the particle surface. To calculate the interaction
force, the x-components of the normal and tangential stress at the particle surface need to be
integrated over the particle surface. Non-dimensional coe�cients of drag and interaction are
de®ned, respectively, as:

CD � FD�
1

2
rU 2

0d
2

� , �11�

CI � FI�
1

2
rU 2

0d
2

� , �12�
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where r is the density of the particle. The factor 1
2 has no role in the non-dimensionalisation,

but is conventionally included because 1
2rU

2
0 has physical signi®cance (dynamic pressure) in

Bernoulli's equation (Tritton, 1988); d is equal to the non-dimensional particle diameter. At
low Reynolds numbers, the Stokes law applies and the drag coe�cient for a sphere equals:

CD � 6p
Re

�13�

2.4. Calculation of the 3D ¯ow around two spheres placed side by side

A steady 3D incompressible laminar ¯ow was considered of a Newtonian ¯uid past two
identical spheres held ®xed, with the line connecting the sphere centres normal to a uniform
stream, as shown in Fig. 2. First, we test the accuracy of the full 3D solution procedure by
predicting the ¯ow over a single sphere. Then, we discuss the 3D ¯ow interactions between two
spheres.
The calculations were performed on a Power Challenge XL (Silicon Graphics) computer, the

calculation time varied between 8 and 10 CPU (Compiler Processing Units) hours for every
single calculation. The ®nite elements software package was developed by the Engineering
o�ce SEPRA (Segal, 1993).

3. Results and discussion

3.1. Flow interactions of two spheres

We have calculated two values for CD in the case of two spheres. For d0 � 1:50 and 2.31,

Fig. 2. Flow geometry and coordinates, d0 is the distance normalized by the sphere radius from a sphere centre to
the symmetry plane between two spheres.
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CD � 4:87 and 4.53 for Re � 10 and 1.74 and 1.69 for Re � 50: For d0 > 4, CD is equal to the
values prevailing in the case of one sphere. For Re � 50, the results of Kim et al. (1993) di�er
by less than 3% from our data.
Fig. 3 shows the interaction coe�cient as a function of d0 (the distance normalised by the

sphere radius) at Re � 10 and 50. The interaction coe�cient CI is negative for d0 < 23 for
Re � 10 (repulsion). It is also negative for d0 < 7:9 and Re � 50: On the other hand at
intermediate separation distances, CI is positive and relatively small; that is, the two spheres
weakly attract each other. This is the case for 7:9 < d0 < 21 at Re � 50: When d0 > 21,
however, the interaction vanishes for both Reynolds numbers.The interaction force vanishes at
a separation of 23 radii, which is not a box-size e�ect. From the plot of Kim et al. (1993), we
can conclude that their data are within 5% of our results.
The interaction coe�cients were calculated as a function of d0 for Re � 5� 10ÿ7, which

prevailed in our experiments (Folkersma et al., 1998). When d0 equals 1.5 and 2.3, the
interaction coe�cient is 73 � 103 and 50 � 103, respectively. This corresponds to the repulsive
interaction force (FI) of 9.1� 10ÿ18 and 6.2� 10ÿ18 N, respectively. These forces are very small
(compared with the drag force and London±van der Waals attraction, 10ÿ15 and 10ÿ14 N,
respectively), even at those small separation distances. Therefore, no retarding of coagulation at
1g due to hydrodynamic interactions is expected.

3.2. Flow structure around two spheres

Figs. 4 and 5 show the streamlines for two spheres at d0 � 1:5 for Re � 50 and 5� 10ÿ7.
At Re � 5� 10ÿ7, the streamline pattern does not deviate signi®cantly from the Stokes ¯ow

pattern. Viscous e�ects dominate at any separation distance, and the spheres weakly repel each
other at all separations.
At Re � 50, partial blockage of the ¯ow in the space between the spheres causes a di�erent

¯ow pattern (Fig. 6). Far from the spheres, the stagnation streamlines are closer to the
symmetry plane; the same holds for the stagnation points on the sphere surfaces A, but to a

Fig. 3. Calculated interaction coe�cients (CI) of the solid spheres as a function of d0 at Re � 10 (w) and Re � 50
(r).

R. Folkersma et al. / International Journal of Multiphase Flow 26 (2000) 877±887 883



lesser degree. Thus, the stagnation streamlines diverge and this causes ¯ow accelerations near
the spheres, which in turn cause changes in the local pressure and shear stress. For the left
sphere (Fig. 6), at A and C, a higher pressure is generated than at B and D, respectively.
However, not all these e�ects are of equal importance for the interaction between the spheres.

Fig. 4. Streamlines around two spheres in the principal plane at Re � 50 and d0 � 1:5:

Fig. 5. Streamlines around two spheres in the principal plane at Re � 5� 10ÿ7 and d0 � 1:5:
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Thus, the shear stresses at C and D are directed normally to the line connecting the spheres'
centres and do not contribute attraction or repulsion.
The resulting force has the following characteristics: when the spheres are very close, the

e�ects of pressures and shear stresses at points A and B dominate over those at C and D; the
net e�ect is that the spheres repel each other. When the spheres are at intermediate distances,
the e�ects at C and D dominate slightly, and the spheres experience a weak attraction (see
Fig. 3).
According to Kim et al. (1993), the torque acting on the sphere is relatively small, and the

moment coe�cient (de®ned as: M � �S rxt dS, where S denotes the surface of the sphere, r is
the position vector from the centre of the sphere, and t is the viscous stress tensor) is less than
1% of the drag coe�cient for all the separation distances and Reynolds numbers. According to
Kim et al. (1993), the main reason for this is that the torque depends only on the distribution
of the shear stresses and it appears that the shear stress on one side of the sphere counteracts
the stress on the other side of the sphere. Therefore, no e�ect on the interaction coe�cients is
expected due to rotation of the spheres.

4. Conclusions

Interaction forces were calculated by a 3D FEM, for the case of two spherical particles in a
¯ow directed perpendicular to the line connecting their centres. The method was tested by
calculating Stokes ¯ow at Re < 3, and Navier±Stokes ¯ow at Re > 3 around a single spherical
particle. The results (not shown here), were in good agreement with data found in literature
(Stimson and Je�erey, 1926; Happel and Brenner, 1965; Ossen, 1927).
The calculations of ¯ow interactions between two spheres, yield negative interaction

coe�cient CI for d0 < 23, Re � 10 (repulsion). CI is also negative for d0 < 8, Re � 50: On the
other hand, CI is positive and relatively small, that is, the two spheres weakly attract each
other at intermediate separation distances: 8 < d0 < 21 and Re � 50: When d0 > 21 the

Fig. 6. Pressure ( p ) and shear stress �t� acting on the spheres for Re � 50 at d0 � 1:5:
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interaction vanishes for all Reynolds numbers. The results agreed with those found by Kim et
al. (1993).
For Re � 5� 10ÿ7, when d0 � 1:5, CI � 73,000: This corresponds to repulsive interaction

force of 9 � 10ÿ18 N. This force is four orders of magnitude lower than the drag force and
London±van der Waals attraction force. It should be noted that the van der Waals forces are
signi®cant at shorter interaction distances than those calculated in the case of d0 � 1:5:
However, at smaller values of d0 the repulsive hydrodynamic interaction is much less than the
London±van der Waals attraction force. When two spheres are almost in contact, the ¯ow
considers the two spheres as one object and there are no stress and pressure gradients in the
gap between them.
We conclude that no signi®cant retarding of coagulation at 1g, during particles' settling, is

expected resulting from these small repulsive hydrodynamic interaction forces.
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